Sequential SNP systems based on min/max spike number
نویسندگان
چکیده
منابع مشابه
Small universal sequential spiking neural P systems based on minimum spike number
Spiking neural P systems (SN P systems, for short) are a class of distributed parallel computing devices inspired from the way neurons communicate by means of spikes. Recently, a variant of SN P systems was considered: at each step the neuron with the minimum number of spikes among the neurons that can spike will fire. It has been shown, in previous papers, that such systems are Turing complete...
متن کاملdesigning unmanned aerial vehicle based on neuro-fuzzy systems
در این پایان نامه، کنترل نرو-فازی در پرنده هدایت پذیر از دور (پهپاد) استفاده شده است ابتدا در روش پیشنهادی اول، کنترل کننده نرو-فازی توسط مجموعه اطلاعات یک کنترل کننده pid به صورت off-line آموزش دیده است و در روش دوم یک کنترل کننده نرو-فازی on-line مبتنی بر شناسایی سیستم توسط شبکه عصبی rbf پیشنهاد شده است. سپس کاربرد این کنترل کننده در پهپاد بررسی شده است و مقایسه ای ما بین کنترل کننده های معمو...
Homogeneous spiking neural P systems working in sequential mode induced by maximum spike number
Keqin Jiang, Tao Song, Wei Chen and Linqiang Pan Key Laboratory of Image Processing and Intelligent Control, Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; School of Computer and Information, Anqing Teachers College, Anqing, Anhui, 246133, China; School of Automation, Wuhan University of Technology, Wuhan, Hubei, 430070...
متن کاملStability of cross-validation and minmax-optimal number of folds
In this paper, we analyze the properties of cross-validation from the perspective of the stability, that is, the difference between the training error and the error of the selected model applied to any other finite sample. In both the i.i.d. and non-i.i.d. cases, we derive the upper bounds of the one-round and average test error, referred to as the one-round/convoluted Rademacher-bounds, to qua...
متن کاملA Modified MinMax k-Means Algorithm Based on PSO
The MinMax k-means algorithm is widely used to tackle the effect of bad initialization by minimizing the maximum intraclustering errors. Two parameters, including the exponent parameter and memory parameter, are involved in the executive process. Since different parameters have different clustering errors, it is crucial to choose appropriate parameters. In the original algorithm, a practical fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2009
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2009.03.004